Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32978139

RESUMO

Clostridium thermocellum and Thermoanaerobacterium saccharolyticum were grown in cellobiose-limited chemostat cultures at a fixed dilution rate. C. thermocellum produced acetate, ethanol, formate, and lactate. Surprisingly, and in contrast to batch cultures, in cellobiose-limited chemostat cultures of T. saccharolyticum, ethanol was the main fermentation product. Enzyme assays confirmed that in C. thermocellum, glycolysis proceeds via pyrophosphate (PPi)-dependent phosphofructokinase (PFK), pyruvate-phosphate dikinase (PPDK), as well as a malate shunt for the conversion of phosphoenolpyruvate (PEP) to pyruvate. Pyruvate kinase activity was not detectable. In T. saccharolyticum, ATP but not PPi served as cofactor for the PFK reaction. High activities of both pyruvate kinase and PPDK were present, whereas the activities of a malate shunt enzymes were low in T. saccharolyticum In C. thermocellum, glycolysis via PPi-PFK and PPDK obeys the equation glucose + 5 NDP + 3 PPi → 2 pyruvate + 5 NTP + Pi (where NDP is nucleoside diphosphate and NTP is nucleoside triphosphate). Metabolic flux analysis of chemostat data with the wild type and a deletion mutant of the proton-pumping pyrophosphatase showed that a PPi-generating mechanism must be present that operates according to ATP + Pi → ADP + PPi Both organisms also produced significant amounts of amino acids in cellobiose-limited cultures. It was anticipated that this phenomenon would be suppressed by growth under nitrogen limitation. Surprisingly, nitrogen-limited chemostat cultivation of wild-type C. thermocellum revealed a bottleneck in pyruvate oxidation, as large amounts of pyruvate and amino acids, mainly valine, were excreted; up to 50% of the nitrogen consumed was excreted again as amino acids.IMPORTANCE This study discusses the fate of pyrophosphate in the metabolism of two thermophilic anaerobes that lack a soluble irreversible pyrophosphatase as present in Escherichia coli but instead use a reversible membrane-bound proton-pumping enzyme. In such organisms, the charging of tRNA with amino acids may become more reversible. This may contribute to the observed excretion of amino acids during sugar fermentation by Clostridium thermocellum and Thermoanaerobacterium saccharolyticum Calculation of the energetic advantage of reversible pyrophosphate-dependent glycolysis, as occurs in Clostridium thermocellum, could not be properly evaluated, as currently available genome-scale models neglect the anabolic generation of pyrophosphate in, for example, polymerization of amino acids to protein. This anabolic pyrophosphate replaces ATP and thus saves energy. Its amount is, however, too small to cover the pyrophosphate requirement of sugar catabolism in glycolysis. Consequently, pyrophosphate for catabolism is generated according to ATP + Pi → ADP + PPi.


Assuntos
Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Nitrogênio/metabolismo , Thermoanaerobacterium/metabolismo , Reatores Biológicos , Análise do Fluxo Metabólico
2.
Clin Cancer Res ; 25(22): 6633-6643, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31320596

RESUMO

PURPOSE: Recommended phase II dose (RP2D) determination for combination therapy regimens is a constrained optimization problem of maximizing antitumor activity within the constraint of clinical tolerability to provide a wide therapeutic index. A methodology for addressing this problem was developed and tested using clinical and preclinical data from combinations of the investigational drugs TAK-117, a PI3Kα inhibitor, and TAK-228, a TORC1/2 dual inhibitor. EXPERIMENTAL DESIGN: Utilizing free fraction-corrected average concentrations, [Formula: see text] and [Formula: see text], which are the primary pharmacokinetic predictors of single-agent preclinical antitumor activity, a preclinical exposure-efficacy surface was characterized, allowing for nonlinear interactions between growth rate inhibition of the agents on a MDA-MB-361 cell line xenograft model. Logistic regression was used to generate an exposure-effect surface for [Formula: see text] and [Formula: see text] versus clinical toxicity outcomes [experiencing a dose-limiting toxicity (DLT)] in single-agent and combination dose-escalation studies. A maximum tolerated exposure curve was defined at which DLT probability was 25%; predicted antitumor activity along this curve was used to determine optimal RP2D. RESULTS: The toxicity constraint curve determined from early clinical data predicted that any clinically tolerable combination was unlikely to result in greater antitumor activity than either single-agent TAK-117 or TAK-228 administered at their respective MTDs. Similar results were obtained with 10 other cell lines, with one agent or the other predicted to outperform the combination. CONCLUSIONS: This methodology represents a general, principled way of evaluating and selecting optimal RP2D combinations in oncology. The methodology will be retested upon availability of clinical data from TAK-117/TAK-228 combination phase II studies.See related commentary by Mayawala et al., p. 6564.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Modelos Teóricos , Neoplasias/tratamento farmacológico , Algoritmos , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ensaios Clínicos Fase I como Assunto , Terapia Combinada , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Humanos , Camundongos , Neoplasias/patologia , Índice Terapêutico , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Microb Cell Fact ; 16(1): 171, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978312

RESUMO

BACKGROUND: Pyruvate decarboxylase (PDC) is a well-known pathway for ethanol production, but has not been demonstrated for high titer ethanol production at temperatures above 50 °C. RESULT: Here we examined the thermostability of eight PDCs. The purified bacterial enzymes retained 20% of activity after incubation for 30 min at 55 °C. Expression of these PDC genes, except the one from Zymomonas mobilis, improved ethanol production by Clostridium thermocellum. Ethanol production was further improved by expression of the heterologous alcohol dehydrogenase gene adhA from Thermoanaerobacterium saccharolyticum. CONCLUSION: The best PDC enzyme was from Acetobactor pasteurianus. A strain of C. thermocellum expressing the pdc gene from A. pasteurianus and the adhA gene from T. saccharolyticum was able to produce 21.3 g/L ethanol from 60 g/L cellulose, which is 70% of the theoretical maximum yield.


Assuntos
Clostridium thermocellum/enzimologia , Clostridium thermocellum/metabolismo , Etanol/metabolismo , Piruvato Descarboxilase/metabolismo , Acetobacteraceae/enzimologia , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Celulose/metabolismo , Clostridium thermocellum/genética , Fermentação , Engenharia Metabólica , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/isolamento & purificação , Temperatura , Thermoanaerobacterium/genética , Thermoanaerobacterium/metabolismo , Zymomonas/genética , Zymomonas/metabolismo
4.
Biotechnol Biofuels ; 10: 108, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469704

RESUMO

BACKGROUND: Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes. RESULTS: In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances, and updating GAM and NGAM values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experimentally measured Michaelis-Menten kinetic parameters. CONCLUSIONS: The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intracellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements in k-ctherm118 and suggest additional experiments to improve kinetic model prediction fidelity. Overall, the study quantitatively assesses the advantages of EM-based kinetic modeling towards improved prediction of C. thermocellum metabolism and develops a predictive kinetic model which can be used to design biofuel-overproducing strains.

5.
J Ind Microbiol Biotechnol ; 44(4-5): 745-757, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28078513

RESUMO

Thermoanaerobacter ethanolicus is a promising candidate for biofuel production due to the broad range of substrates it can utilize and its high ethanol yield compared to other thermophilic bacteria, such as Clostridium thermocellum. Three alcohol dehydrogenases, AdhA, AdhB and AdhE, play key roles in ethanol formation. To study their physiological roles during ethanol formation, we deleted them separately and in combination. Previously, it has been thought that both AdhB and AdhE were bifunctional alcohol dehydrogenases. Here we show that AdhE has primarily acetyl-CoA reduction activity (ALDH) and almost no acetaldehyde reduction (ADH) activity, whereas AdhB has no ALDH activity and but high ADH activity. We found that AdhA and AdhB have similar patterns of activity. Interestingly, although deletion of both adhA and adhB reduced ethanol production, a single deletion of either one actually increased ethanol yields by 60-70%.


Assuntos
Álcool Desidrogenase/metabolismo , Etanol/metabolismo , Thermoanaerobacter/enzimologia , Acetaldeído/metabolismo , Acetilcoenzima A/metabolismo , Álcool Desidrogenase/genética , Biocombustíveis/provisão & distribuição , Thermoanaerobacter/genética
6.
Metab Eng ; 39: 169-180, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27914869

RESUMO

The metabolism of Clostridium thermocellum is notable in that it assimilates sugar via the EMP pathway but does not possess a pyruvate kinase enzyme. In the wild type organism, there are three proposed pathways for conversion of phosphoenolpyruvate (PEP) to pyruvate, which differ in their cofactor usage. One path uses pyruvate phosphate dikinase (PPDK), another pathway uses the combined activities of PEP carboxykinase (PEPCK) and oxaloacetate decarboxylase (ODC). Yet another pathway, the malate shunt, uses the combined activities of PEPCK, malate dehydrogenase and malic enzyme. First we showed that there is no flux through the ODC pathway by enzyme assay. Flux through the remaining two pathways (PPDK and malate shunt) was determined by dynamic 13C labeling. In the wild-type strain, the malate shunt accounts for about 33±2% of the flux to pyruvate, with the remainder via the PPDK pathway. Deletion of the ppdk gene resulted in a redirection of all pyruvate flux through the malate shunt. This provides the first direct evidence of the in-vivo function of the malate shunt.


Assuntos
Vias Biossintéticas/fisiologia , Clostridium thermocellum/fisiologia , Malatos/metabolismo , Análise do Fluxo Metabólico/métodos , Fosfoenolpiruvato/metabolismo , Piruvato Quinase/metabolismo , Ácido Pirúvico/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Glucose/metabolismo , Glicólise/fisiologia , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Ácido Pirúvico/isolamento & purificação
7.
Biotechnol Biofuels ; 9: 116, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27257435

RESUMO

BACKGROUND: Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. Fuels from cellulosic biomass are particularly promising, but would benefit from lower processing costs. Clostridium thermocellum can rapidly solubilize and ferment cellulosic biomass, making it a promising candidate microorganism for consolidated bioprocessing for biofuel production, but increases in product yield and titer are still needed. RESULTS: Here, we started with an engineered C. thermocellum strain where the central metabolic pathways to products other than ethanol had been deleted. After two stages of adaptive evolution, an evolved strain was selected with improved yield and titer. On chemically defined medium with crystalline cellulose as substrate, the evolved strain produced 22.4 ± 1.4 g/L ethanol from 60 g/L cellulose. The resulting yield was about 0.39 gETOH/gGluc eq, which is 75 % of the maximum theoretical yield. Genome resequencing, proteomics, and biochemical analysis were used to examine differences between the original and evolved strains. CONCLUSIONS: A two step selection method successfully improved the ethanol yield and the titer. This evolved strain has the highest ethanol yield and titer reported to date for C. thermocellum, and is an important step in the development of this microbe for industrial applications.

8.
Biotechnol Biofuels ; 9: 100, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27152121

RESUMO

BACKGROUND: Thermoanaerobacter ethanolicus produces a considerable amount of ethanol from a range of carbohydrates and is an attractive candidate for applications in bioconversion processes. A genetic system with reusable selective markers would be useful for deleting acid production pathways as well as other genetic modifications. RESULTS: The thymidine kinase (tdk) gene was deleted from T. ethanolicus JW200 to allow it to be used as a selectable marker, resulting in strain X20. Deletion of the tdk gene reduced growth rate by 20 %; however, this could be reversed by reintroducing the tdk gene (strain X20C). The tdk and high-temperature kanamycin (htk) markers were tested by using them to delete lactate dehydrogenase (ldh). During positive selection of ldh knockouts in strain X20 on kanamycin agar plates, six out of seven picked colonies were verified transformants. Deletion of ldh reduced lactic acid production by 90 %. The tdk and 5-fluoro-2'-deoxyuridine (FUDR) combination worked reliably as demonstrated by successful tdk removal in all 21 colonies tested. CONCLUSION: A gene deletion and integration system with reusable markers has been developed for Thermoanaerobacter ethanolicus JW200 with positive selection on kanamycin and negative selection on FUDR. Gene deletion was demonstrated by ldh gene deletion and gene integration was demonstrated by re-integration of the tdk gene. Transformation via a natural competence protocol could use DNA PCR products amplified directly from Gibson Assembly mixture for efficient genetic modification.

9.
Biotechnol Biofuels ; 8: 138, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379770

RESUMO

BACKGROUND: Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30-70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. RESULTS: It was found that pyruvate ferredoxin oxidoreductase enzyme (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. CONCLUSION: PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis.

10.
PLoS One ; 9(8): e103937, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111800

RESUMO

For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.


Assuntos
Engenharia/métodos , Engenharia/instrumentação , Falha de Equipamento , Modelos Teóricos , Reprodutibilidade dos Testes , Fatores de Risco , Estresse Mecânico , Fatores de Tempo
11.
Microbiol Res ; 169(5-6): 469-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24035043

RESUMO

Gluconobacter oxydans, belonging to acetic acid bacteria, is widely used in industrial biotechnology. In our previous study, one of the main glucose metabolic pathways in G. oxydans 621H was blocked by the disruption of the mgdh gene, which is responsible for glucose oxidation to gluconate on cell membrane. The resulting 621H Δmgdh mutant strain showed an enhanced growth and biomass yield on glucose. In order to further understand the intracellular utilization of glucose by 621H Δmgdh, the functions of four fundamental genes, namely glucokinase-encoding glk1 gene, soluble glucose dehydrogenase-encoding sgdh gene, galactose-proton symporter-encoding galp1 and galp2 genes, were investigated. The obtained metabolic characteristics of 621H Δmgdh Δglk1 and 621H Δmgdh Δsgdh double-gene knockout mutants showed that, in vivo, glucose is preferentially phosphorylated to glucose-6-phosphate by glucokinase rather than being oxidized to gluconate by soluble glucose dehydrogenase. In addition, although the galactose-proton symporter-encoding genes were proved to be glucose transporter genes in other organisms, both galp genes (galp 1 and galp2) in G. oxydans were not found to be involved in glucose uptake system, implying that other unknown transporters might be responsible for transporting glucose into the cells.


Assuntos
Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Glucose 1-Desidrogenase/deficiência , Glucose/metabolismo , Mutagênese , Análise Mutacional de DNA , Deleção de Genes , Gluconobacter oxydans/crescimento & desenvolvimento , Redes e Vias Metabólicas/genética
12.
Appl Environ Microbiol ; 79(9): 3000-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23435896

RESUMO

Cofactor specificities of glycolytic enzymes in Clostridium thermocellum were studied with cellobiose-grown cells from batch cultures. Intracellular glucose was phosphorylated by glucokinase using GTP rather than ATP. Although phosphofructokinase typically uses ATP as a phosphoryl donor, we found only pyrophosphate (PPi)-linked activity. Phosphoglycerate kinase used both GDP and ADP as phosphoryl acceptors. In agreement with the absence of a pyruvate kinase sequence in the C. thermocellum genome, no activity of this enzyme could be detected. Also, the annotated pyruvate phosphate dikinase (ppdk) is not crucial for the generation of pyruvate from phosphoenolpyruvate (PEP), as deletion of the ppdk gene did not substantially change cellobiose fermentation. Instead pyruvate formation is likely to proceed via a malate shunt with GDP-linked PEP carboxykinase, NADH-linked malate dehydrogenase, and NADP-linked malic enzyme. High activities of these enzymes were detected in extracts of cellobiose-grown cells. Our results thus show that GTP is consumed while both GTP and ATP are produced in glycolysis of C. thermocellum. The requirement for PPi in this pathway can be satisfied only to a small extent by biosynthetic reactions, in contrast to what is generally assumed for a PPi-dependent glycolysis in anaerobic heterotrophs. Metabolic network analysis showed that most of the required PPi must be generated via ATP or GTP hydrolysis exclusive of that which happens during biosynthesis. Experimental proof for the necessity of an alternative mechanism of PPi generation was obtained by studying the glycolysis in washed-cell suspensions in which biosynthesis was absent. Under these conditions, cells still fermented cellobiose to ethanol.


Assuntos
Proteínas de Bactérias/metabolismo , Celobiose/metabolismo , Clostridium thermocellum/enzimologia , Difosfatos/metabolismo , Glicólise , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Clostridium thermocellum/genética , Enzimas/genética , Enzimas/metabolismo , Fermentação , Glucose/metabolismo , Glicogênio/metabolismo , Guanosina Trifosfato/metabolismo , Fosforilação , Piruvato Ortofosfato Diquinase/genética , Piruvato Ortofosfato Diquinase/metabolismo , Deleção de Sequência
13.
Metab Eng ; 15: 151-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23202749

RESUMO

In Clostridium thermocellum, a thermophilic anaerobic bacterium able to rapidly ferment cellulose to ethanol, pyruvate kinase (EC 2.7.1.40) is absent based on both the genome sequence and enzymatic assays. Instead, a new pathway converting phosphoenolpyruvate to pyruvate via a three-step pathway involving phosphoenolpyruvate carboxykinase, NADH-linked malate dehydrogenase, and NADP-dependent malic enzyme has been found. We examined the impact of targeted modification of enzymes associated with this pathway, termed the "malate shunt", including expression of the pyruvate kinase gene from Thermoanaerobacterium saccharolyticum, mutation of the phosphoenolpyruvate carboxykinase and deletion of malic enzyme gene. Strain YD01 with exogenous pyruvate kinase, in which phosphoenolpyruvate carboxykinase expression was diminished by modifying the start codon from ATG to GTG, exhibited 3.25-fold higher ethanol yield than the wild-type strain. A second strain, YD02 with exogenous pyruvate kinase, in which the gene for malic enzyme and part of malate dehydrogenase were deleted, had over 3-fold higher ethanol yield than the wild-type strain.


Assuntos
Carbono/metabolismo , Celulose/metabolismo , Clostridium thermocellum/fisiologia , Etanol/metabolismo , Melhoramento Genético/métodos , Piruvato Quinase/fisiologia , Thermoanaerobacter/fisiologia , Etanol/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...